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SUMMARY.  Frequently in epidemiologic cohort studies, one's primary interest is in estimating the effect of
exposures,  on a time-to-event outcome, , while adjusting for other covariates, .  When the cost ofZ X N3 3 3

measuring  is disproportionate to the cost of , it may be inefficient, or infeasible, to ascertain  on everyone.Z N Z3 3 3

Cost may reflect financial cost, logistical cost, or health risks attendant upon obtaining V  measurements from3

individuals. These considerations have given rise to a number of two-stage sampling schemes where  isN3

observed on all members of a cohort, and  observed only on a subgroup. Common sampling schemes are theZ3

case-cohort and nested case-control designs. Various estimating equations, generally focusing on estimating the
relative risk parameter in a Cox proportional hazards model, have been proposed.  Rather than relative risk, our
focus is on survival, or absolute risk.  We characterize a class of  non and semiparametric cumulative hazard
estimators, and estimate survival as a functional of these cumulative hazards. We express differences between
estimators within a class in terms of differences in the extent to which subjects with unmeasured  contribute toZ3

estimation. We demonstrate how the familiar considerations of identifying what covariates are independent risk
factors for disease can impact design and analyses so as to increase the efficiency of estimation. We motivate
this work, and demonstrate its novel characteristics with a data analysis, and accompanying simulations, of a
two-stage study on  infection and gastric cardia cancer.  We provide code written in R language (or S-H. pylori
plus) that implements these estimators.

KEY WORDS: absolute risk, auxiliary covariate; case-cohort; cumulative hazard; efficiency; missing at
random; nested case-control; population attributable risk, robust estimation; survival; two-stage studies;
weighted estimating equations 

1.    Introduction
  In epidemiologic cohort studies new exposures, which we call , frequently become of interest afterZ3

endpoints have already been recorded at follow-up time .  Two  sampling designs are a common strategy7 -stage
for estimating the association of  with outcome in such cohorts.  We focus on studies where the outcome isZ3

time to some event of interest, .  In the first stage of these studies, one observes a (possibly empty) set ofX3

covariates, , and an outcome  for each  individuals.  As usual, ,  is a censoringE Ð\ ß Ñ 8 \ œ 738 ÐX ßG Ñ G3 3 3 3 3 3 3?
time, , and is the indicator function.  Throughout this paper we assume censoring is?3 3 3œ MÐ\ œ X Ñ MÐ † Ñ
independent and non-informative (see for example, Andersen, Borgan  Gill, and Keiding, 1991). Consistent with
epidemiologic parlance we call those with cases, and those with controls.   the? ?3 3œ " œ !ß [3 denotes
combined set of outcome and covariate data observed at the end of stage 1 (time ).7

[ œ Ö\ ß ß E × Ð"Ñ3 3 3 3?  
In the second stage of the study, using selection probabilities, ( , that depend only on  a sub-sample of19 3 3[ Ñ [ ß
individuals is chosen for measurement of .  The motivation for sub-sampling is that , which we subsequentlyZ Z3 3

refer to as the , are, in some sense, expensive, or difficult, to measure. Since the occurrence of cases isexposures
rare compared to that of controls, and case counts are the main determinants of the variance of the estimators,
sampling rates are generally higher for cases than for controls. We define  if  is known for individual ;V œ " Z 33 3

V œ ! Z3 3 otherwise.  To control confounding, an investigator generally estimates the effect of   conditional on a
set of , , . We call variables in  that are not in , , andadjusting covariates auxiliary variablesN N © E E N3 3 3 3 3

denote them .A3
+?B

 When the outcome is time-to-event, the most common two-stage designs are the case-cohort (Prentice,
1986; Self and Prentice, 1988) and nested case-control designs ( Lidell, McDonald, Thomas, 1997;  Borgan,
Goldstein, and Langholz, 1995). The primary focus of these designs has been estimating relative risks ( )rr
associated with covariates when hazards are specified by a Cox proportional hazards model^ œ ÖZ ß N ×ß3 3 3

(CPH) such as (4).  We recently reviewed these approaches and showed that the estimators and their variances
can be written as a single set of  estimating equations (Mark and Katki, 2001). In contrast, rather than estimating
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" 7 m9ß WÐ lDÑ D − the focus in this paper is on the estimation of the conditional survivals, , where   (the support
of . In Appendix A.4 we provide estimators for functionals of the conditional surivals such as standardized^ Ñ3
survivals, standardized risk differences, and population attributable risks.
 The motivation for this work arises from two-stage studies we have conducted on a cohort in  China
with epidemic rates of gastric cardia stomach cancer (GCC).  This cohort was selected from a well defined
geographic population, and estimates of survival, or absolute risk, are of  public health importance (Mark, Qiao,
Dawsey, et al., 2000). To illustrate the underlying issues, we use data from our study on the association of
H.Pylori (Hp) infection with incident GCC (  et al., 2000).  In that study,Limburg PJ, Wang CQ, Mark  SD, Z3

was the measurement of serum antibodies to Hp:  =  if a subject had antibodies to Hp  contained suchZ " E3 3.
information as age, sex, height, and weight.  Since age was the only significant risk factor in , in the analysisE3

we present,  is an indicator variable, with if a subject's age is greater than the median cohort age. WeN N œ "3 3

document the performance of estimators using simulations based on the structure of  a current study using the
endpoints accrued over a subsequent ten years.
 Though our inferential focus is survival, the mathematical results we present are on the  cumulative
hazard scale, ; ,AÐ> DÑ

 ; |         A - 7Ð> DÑ œ Ð? D Ñ .? ! Ÿ > Ÿ Ð#Ñ(
!

>
†

We  obtain survival estimators through the identity
WÐ>lDÑ œ /B:  Ð Ð> DÑ Ñ Ð$Ñ ; A

 In 1994 Robins, Rotnitsky and Zhao (1994) (henceforth called RRZ), described the class of all two-
stage estimators in terms of weighted estimating equations, and derived the mathematical form of the efficient
member of the class. They focused on conditional mean models.  Applying  their results to time-to-event data,
we describe the class of nonparametric and semiparametric cumulative hazard estimators.  In nonparametric
estimation no assumptions are made regarding the relationship between hazards at different levels of  For theDÞ
semiparametric model we assume the hazards are related by the Cox proportional hazards  (CPH) model
 - - " "Ð?l^ Ñ œ Ð?Ñ/B: Ð Z  N Ñà Ð%Ñ3 9 3

X X
#1 3

where  and  are conformable  vectors of covariates and  parameters.  For simplicity, weÖZ ß N × Ö ß × : ‚ "3 3 " #" "
assume that the  are time invariant, and that, as expressed in ( ), there is no  by interaction. We refer to^ % Z N3

-9Ð?Ñ as the baseline hazard.  Since our interest is in contrasting survivals of  groups of individuals, in the body
of the paper we assume  has finite support of dimension k .  In the Hp   . In appendix D we give^ 5 œ %3

‡ ‡ data
results on estimation in a completely general support space.
 There are several practical advantages to the RRZ formulation.  Both the case-cohort (CCH), and
nested case-control (NCC) designs specify that cases be sampled with probability one. When  is not measuredZ3

on all cases, the cumulative hazard estimators given in those  proposals are biased (Mark and Katki, 2001).
Epidemiology studies commonly require exposure measurements which are expensive and consume limited
specimens. Consequently designs with  fractional cases-sampling have become increasingly frequent and
attractive (Mark and Katki, 2001).  In the Hp study, due to uncertainties with regard to the direction of the
association, and the prevalence of  Hp infection, as well as a reluctance to use up the small quantities of
available serum, we sampled approximately 25% of available GCC cases.  The estimating equations we describe
are weighted by the inverse of the sampling probability, and accommodate any non-zero sampling rate. Even
when the intent of an investigator is to measure V on all the cases, vagaries beyond investigator control seldom,
if ever, permit complete ascertainment (Mark et al, 2000; Mark and Katki, 2001).  We describe the additional
assumptions required for estimation when there is unplanned missingness in section 6.
  Another feature distinguishing RRZ from CCH and NCC estimators, is that in RRZ estimators,
individuals with unobserved V  contribute to estimation.  In this paper we emphasis that the distinction between3

estimators within the RRZ class, and hence the differences in efficiency, are entirely due to variation in the
extent to which .  We derive expressions for the efficientinformation from subjects with R   is utilized3 œ !
nonparametric, and the restricted-class efficient (defined in section 4) semiparametric estimators, in terms of
aspects of the probability distribution of the data familiar to epidemiologists.  This formulation has clear
implications for the design and analysis of two-stage studies.
 Finally, in this paper we emphasize a particular approach to estimation, which we call  -estimation.1s
Formulation in terms of  -estimation provides a geometric representation, as well as a practical means of1s
implementing, efficiency consideration. R and S-plus code that implements these -estimators is provided in1s
Appendix F.
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2.   Full-Data Estimators and Influence Functions
 We refer to studies in which  is observed for all  individuals as Z 83 full data studies, and use
L œ Ö[ ßZ ×3 3 3  to denote the fully observed data.  In a sense made specific in section 4, RRZ proved that that all
two-stage estimators and their corresponding influence functions can be expressed as weighted versions with
offset of their full data counterparts.  In this section we describe the full data estimators and influence functions
for the nonparametric cumulative hazard, and for the semiparametric estimators of  and the baseline"9

cumulative hazard (5) .

  A 7 " -9 9 9
!

Ð ß Ñ œ Ð?Ñ .? Ð&Ñ( 7

For the semiparametric model, the cumulative hazard at any covariate level  is ( ,D à DÑ œ Ð ß Ñ/B: DA 7 " A 7 " "9 9
X
9

and is estimated in the obvious fashion. Its distribution is derived by the delta method, such as in Anderson et al.
(1991).  To indicate the  1 vector of cumulative hazards, we drop  from the arguments and write ( , or5 ‚ D Ñ‡ A 7
A 7 " 7( , .  For concreteness we generally use  as the time argument in the cumulative hazards or survival.  In9Ñ
section 4 we provide corresponding results for two-stage estimators.
 In full data studies, the Nelson -Aalen estimator, , , is the efficient nonparametric estimator of 2A 7sÐ DÑ Ð Ñ

(Anderson et al., 1991). The partial likelihood estimator,  , and the Breslow estimator,  are the" 7s A "s Ð ß Ñs9

semiparametric efficient estimators of   (4)  and the baseline cumulative hazard (5) ( Anderson et al, 1991)."9

Using standard counting process notation, we denote the event counting process  iff  R R Ð?Ñ œ " Ÿ ß3Ð?Ñ, ( 3 X ?3

and ), and the at risk process, ( iff   ).  For individual the hazard of  X Ÿ G ] Ð?Ñß ] Ð?Ñ œ "ß ÐG • X Ñ ? 3 X3 3 3 3 3 3 3Ÿ
conditional on  is |  .  We assume the |  are non-negative, and the ;  are^ Ð? ^ Ñ œ ] Ð?Ñ ‚ Ð?l^ Ñ Ð? DÑ Ð DÑ3 3 3 3 3- - - A 7
finite.  In the context of nonparametric estimation the above should be regarded as a multivariate counting
process of dimension .  That is, we estimate the within-stratum cumulative hazards, , where, for5 5 Ð Ñ‡ ‡

2A 7
instance, the    row of is iff   ,  and .  As is standard we2 >2 R Ð?Ñ R Ð?Ñ œ "ß MÐ^ œ 2 Ñ ß X Ÿ Gw

3 32 3 33 X Ÿ ?3

define,  ( );    ( ) ;  and    ( )   .W Ð?Ñ œ ] ? W Ð?ß Ñ œ ] ? /B: Ð ^ Ñ W Ð?ß Ñ œ ] ? ^ /B: Ð ^ Ñs s s s! ! "

4œ" 3œ" 3œ"

8 8 8

3 3 3 3 3 3! ! !" " " "

Under the usual regularity conditions (Anderson et al. ,1991),   for8 W Ð?ß † Ñ I W Ð?ß † ÑÓ œ = Ð?ß † Ñ
637 :" 4 4 4Ò 

all three processes. denotes the counting process martingale, .Q Ð? Ñ Q Ð?Ñ œ R Ð?Ñ  Ð?Ñ3 3 3 3A
 The full data Nelson-Aalen estimator of (  is (Anderson)5 ‚ " Ñ‡ A 7

A 7sÐ Ñ œ W Ð?Ñ .R Ð?Ñ Ð'Ñ"(
3œ"

8

!

! "
3

7

Anderson et al. (1991) give the influence function expansion of  asA 7s Ð Ñ

8 Ð Ñ  Ð Ñ œ 8 H  9 Ð"Ñ Ð(Ñs" "
# #Š ‹ "A 7 A 7  J

3œ"

8

3 :
1 

H œ = Ð?Ñ .Q Ð?Ñ Ð)ÑJ !
3

!

"
3

1 (  ‘7

Newey (1990) showed that all nonparametric estimators have identical influence functions, and hence, are
asymptotically equivalent.  Thus (8  is the influence function for any nonparametric estimator of Ñ Ð ÑÞA 7

 The class of full data estimators for the  in CPH model (4) ( RRZ, 1994) are the 's that solve" "9
sÐ2Ñ

  "( š ›
3œ"

8

!
3 3 3

" ! "
7

2Ð^ ß\ Ñ  W Ð=ß ß 2Ñ W Ð=ß Ñ .R Ð=Ñ œ ! Ð*Ñ" "

The choice of the function  determines the efficiency of the estimator.  For full data, the2Ð^ ß\ Ñ3 3

semiparametric efficiency bound is achieved by the partial likelihood estimator with =  The full2Ð^ ß\ Ñ ^ Þ3 3 3

data influence function for the partial likelihood estimator is HJ#
3

H œ ^  /Ð?ß Ñ .Q Ð?Ñ Ð"!ÑJ "
3

!
3 9 3

2 3 ( š ›7

"   

where , and  the usual partial likelihood information. As in (7),/Ð?ß Ñ œ = Ð?ß Ñ= Ð?ß Ñ" " "9 9 9
" ! " 3 I ÒH H Ó=  ,3 3

J J w2 2

the estimator  can be expressed as the sum of its iid influence functions."s

 The Breslow estimator of the baseline cumulative hazard, A 7 "9Ð ß Ñ, is given by

 A " "s Ð ß Ñ œ W Ð?ß Ñ .R Ð?Ñ Ð""Ñs s
9

3œ"

8

!

! "
37 "(  ‘7

 To obtain the influence function for (11)  we  write
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A 7 " A 7 " A 7 " A 7 " A 7 " A 7 "s s s sÐ Ñ  Ð Ñ œ Ð Ñ  Ð Ñ Ð Ñ  Ðs s
9 9 9 9 9 9 9 9 9 9, , ,  ,  + , , ) š › š › Ð"#Ñ

Using  a Taylor series expansion of   around  as in Theorem VII 2.3 Anderson et al. (1991), we express the" "s
9

first term in the right hand side of (12)  as

Ð  Ñ /Ð?ß Ñ Ð?Ñ .?  9:Ð"Ñs" " " -9 9 9
!

w ( 7

 

Then replacing estimators in (12) with their influence functions, we have
8 Ð Ñ  Ð Ñ œ 8 H  9 Ð"Ñs s" "

# #š › " , ,  A " A "9 9 9 :
 J$

37 7 Ð"$Ñ

H œ = Ð?ß Ñ .Q Ð?Ñ  H /Ð?ß Ñ .J$ ! J
3 3

! !
9 3 9

" w( ( ‘7

" "2
7

A "9 9Ð?ß Ñ

 We refer to the H , − Ö"ß #ß $×3
J,, , as the .  Like all influence functions,full data influence function=

they are iid and have expectation 0.  Hence the asymptotic variance of each estimator is  .I H H’ “J, J,
3 3

w

 Though we explicitly present results for a non-stratified  CPH model, the results of a stratified model,
with strata generated from a discretization of , can be described using the multivariate counting process.E3

3.  Stage-Two Sampling Restrictions
 For  most of the paper we assume that conditional on  selection of individuals for measurement of[3ß

Z Ð[ Ñ Z Þ3 3 3 is independent with known, non-zero, probabilities,  that do no depend on  That is1
9

  ,   1Ð[ Ñ œ T<Ð V œ "l[ Z Ñ œ T<Ð V œ "l[ Ð"%Ñ3 3 3 3 3 3‰
In the usual parlance of missing  data, restriction (14) is consistent with being missing at  random (MAR)Z3

(Rubin, 1976).  As we frequently do for random variables, we drop the explicit argument of a function, and use
the subscript  to indicate that it is a random variable. Thus we write , where  .   At the end of3 ´ Ð[ Ñ1 1 13ß9 39 9 3

section 8 we extend the results to dependent sampling, and to missingness that is not entirely under investigator
control.
 Without loss of generality we specify the known sampling probabilities using  the logistic model

6913> Ð[ Ñ œ 2Ð[ Ñ Ð"&Ñ1 <9 3 3
w
9   

Here  and are known, conformable, finite dimensional vectors of parameters and random variables,<9 32Ð[ Ñ
respectively. Clearly neither the parameterization nor the dimension of equation (15) are unique.  For instance,
if  contains only information on sex, and stage-two sampling depends only on case status, then two correctlyE3

specified models for (15) would be
   6913> Ð[ Ñ œ MÐ œ "Ñ  MÐ œ !Ñ Ð"'Ñ1 < ? < ?9 3 9 3 9# 31
6913> Ð[ Ñ œ MÐ œ "Ñ  MÐ œ !Ñ  Ð"(Ñ1 < ? < ?9 3 9 3 9# 31  

< <9$ 9%     MÐ7+6/Ñ  MÐ0/7+6/Ñ
Here and .< ? < ? < <9" 3 3 9# 3 3 9$ 9%œ 6913> T <ÐV œ "l œ "Ñ à œ 6913> T <ÐV œ "l œ !Ñß œ œ !
 We define  to be the smallest set of linearly independent vectors such that (15) is true where size[3

V

refers to the dimension of the column space spanned by the .  In our example, the dimension of   is2Ð[ Ñ [3 3
V

two.  Correctly specified models are those with covariates  such that[6

[   [ Ð")Ñ3 3
6 V .

We consider models with equivalent spans to be identical, and restrict ourselves to covariate spaces where the
[3

6 are linearly independent.
 We denote the scores from any logistic model with covariates as ,[ W6 6

3 3

W ÐV  Ñ[ Ð"*Ñ3 3
6 6

3 39 = 1

4  Two-Stage Estimators and Influence Functions
  The two-stage risk set estimators, , are inverse probability weighted versions of the full data~

W Ð?ß † Ñ
4

estimators.  For instance,  ( ) . Like their  full data counterparts, their averages converge~
W Ð?Ñ œ V ] ?

!

2
4œ"

8

39
"

3 3ß2! 1

in probability to  (Pugh, 1993; RRZ, 1994 ).= Ð?ß † Ñ4

  RRZ prove that two-stage estimators, and their influence functions, can be expressed as weighted
versions of the full data quantities with an "offset".  Applying these results to  nonparametric estimation
establishes that all two-stage estimators of (  are asymptotically equivalent to a member in the class ofA 7Ñ

estimators, , , defined as~
A 7Ð 1 Ñ"
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A 7 1 1 1
~      ~
Ð ß 1 Ñ œ V W Ð?Ñ .R Ð?Ñ  ÐV  Ñ Ð#!Ñ" 3 3 3 39

3œ"

8

!
3ß9 39
" "! "" ( Š ‹7

1 Ð[ Ñ1 3 Ÿ
Here vector of1 Ð[ Ñ 5 [ Þ1 3 3 is any  non-stochastic functions of  specified by the investigator  The‡ ‚ "
corresponding influence functions are

H Ð1 Ñ œ V H  ÐV  Ñ Ð#"Ñ" " J" "
3 3 3 39" 3 3 39 1 1 1 1 Ð[ Ñ1 3

Note that here, unlike the full data case where we have a single estimating equation (6) and influence function
(8), there are a class of estimators and influence functions characterized by the "offset"  .1 139

"
3 39ÐV  Ñ 1 Ð[ Ñ1 3

 he class of two-stage semiparametric estimators of  are characterized by an  function as well T "9 2Ð † Ñ
as the  offset term, (RRZ,1994)   Efficiency in estimation depends on the choice of  : 1 Ð[ Ñ‚ " ÐV  Ñ Þ1 139

"
3 39 2 3

both the   and  functions. The optimal function  is a non-closed form integral equation that is a2Ð † Ñ 1 Ð † Ñ 2Ð † Ñ#

function of  infinite dimensional parts of the survival and covariate distributions (RRZ, 1994).  For reasons of
practicality, we therefore follow a general recommendation of RRZ and restrict our estimators to the subclass
that use the efficient full data  function, Z .  This subclass includes the CCH and NCC2Ð † Ñ 2Ð^ ß\ Ñ œ3 3 3

estimators.  Hence, we consider estimators   that solve~
"Ð1 Ñ2! Š š › ‹'

3œ"

8

! 3 3 3 3 39
" " "
3 39

" !7
V ‚ ^  W Ð=ß Ñ W Ð=ß Ñ .R Ð=Ñ  ÐV  Ñ œ ! Ð##Ñ1 " " 1 1

~ ~
1 Ð[ Ñ2 3

Due to this restriction, we refer to efficiency results for estimators of , and , ) as  restricted-class" A "9 9 9Ð=

efficient estimators (RC-efficient).  The influence functions for   are~
"Ð1 Ñ#

  H Ð1 Ñ œ V H Ð Ñ  ÐV  Ñ1 Ð[ Ñ Ð#$Ñ# " J# "
3 39 3 39# 3 3 39 31 " 1 1 2

 The procedure for estimating the baseline cumulative hazard ( 5) is analogous to the full data case.
First estimate  any scalar function of ,"

~ , then, with Ð1 Ñ2 1 Ð[ Ñ [‡
3 33

  , ;~ ~
A 7 1 19

‡ " ‡
$ 39 3 3 39 3Ð ß 1 Ñ œ V ÐV  Ñ1 Ð[ Ñ Ð#%Ñ" "

~ ~
Ð1 Ñ W Ð?ß Ð1 ÑÑ .R Ð?Ñ # 3

3œ"

8

!

! "! '  ‘š ›7
2 3

Using an identical Taylor series expansion as above, the influence functions for (24) are
    =   H Ð1 Ñ V H  ÐV  Ñ1 Ð[ Ñà 1 œ 1  1 /Ð?ß Ñ Ð?ß Ñ Ð#&Ñ$ " J " ‡

3 $ 3 3 39 $ 3 3ß$ 3ß# 9 9 939 3 39 3ß$ !1 1 1 " A "3 ' 7
.

 As for the full data case, the asymptotic variances of the estimators are  .I H H’ “, ,
3 3

w

 Letting   denote any non or semiparametric estimator of (3), we estimate  by~
A 7 7Ð ß † Ñ WÐ l@4Ñ

substituting  for  in .  The asymptotic variances are obtained by the delta method.  Consistent~
A 7 A 7Ð ß † Ñ Ð Ñ Ð$Ñ

estimators of  , and the variances of the , , are given in appendix A.~
I H H WÐ † l@4Ñ’ “J, J,

3 3
w

7

 5.   The Efficient g  for Estimators of  and , 9Ð † Ñ Ð=ÑA "
 We define simple true-  estimators (STP) as those in which 1 1 œ !,  in 20,22,24 , and write the STP
influence functions as, .  We can then express the  asH Ð Ñ ´ V H H Ð1 Ñ, " J, ,

3 39 3 39 3 ,1 1

H Ð1 Ñ œ H Ð Ñ  ÐV  Ñ1 Ð#'Ñ3 3 39
, , "

, 9 3 39 3ß,1 1 1
From  20,22,and 24, it is apparent that differences between estimators in each class are entirely due to
differences in the 1 1, ,. Thus, finding the minimum variance estimator is equivalent to finding the  that
minimizes     We call such a , the efficient, or for the semiparametric models  RC-efficient,IÒH Ð1 ÑH Ð1 ÑÓ Þ3 3

, ,
, , ,

X  1
1 1 , − Ö"ß #×,

/00
,, and denote it by .  For , direct application of proposition 2.3 of RRZ  establishes that

1 œ IÒ H l[ Ó Ð=ß Ñ 1 1/00
3ß, 3

J, ‡
3 9 #  .  For estimators of , which are a function of and , we use RRZ 2.3 and showA " 3

(Appendix B) that the minimum variance is obtained with  , and that1 œ !ß 1 œ IÒ H l[ Ó2 3
‡ J,

3 3

1 œ H [/00 J$
33 I’ ¹ “.

 RRZ prove that an equivalent representation of the influence functions in (26)  is
H Ð[ Ñ œ H Ð Ñ  ; W Ð#(Ñ3 3 3

, 6 , , 6
91

 

Here  is any conformable matrix of constants, and are scores (19) from correctly specified logistic models; W, 6
3

(15).  In appendix C we use (27) to provide an alternative derivation  for the efficiency results of RRZ 2.3.  The
proof relies on the following two characteristics of population least squares regression that are fundamental to
understanding the  -estimating procedures, their efficiency properties, and their method of implementation: 1)1s
for any given set of scores, ,  the variance of   is minimized when  is the projection operator, , ofW H Ð[ Ñ ; T3 3

6 , 6 , ,6

H Ð Ñ W, 6
3 33ß91  on .

T œ IÒH Ð ÑW IÒW W Ð#)Ñ,6 , 6 6 6
3 3 39

w w "
1 ‘ ‘  

2003 Joint Statistical Meetings - Section on Statistics in Epidemiology

2679



2) Since  is the residual from a projection the variance is non-decreasing in the dimension ofH Ð Ñ  T W ß, ,6 6
3 33ß91

[3
6.  In appendix C we show that the minimum variance is reached when

T ÐV  ÑI H l[ Ð#*Ñ,6 6
3W œ 1 139 3

" J,
3 39 3’ “   

and that (29) (Appendix C, Result 2) is true for logistic model (30)
6913> Ð[ Ñ œ 2Ð[ Ñ [ à [ œ I H [ Ð$!Ñ1 < < 19 3 3 3

w w " J,
" # 39 33ß, 3ß,

/00 /00 +    ’ ¹ “
6.   -Estimators1s
 We define -estimators to be the solution to estimating equations 20,22, and 24 when  and the1s 1 œ !3ß,

known sampling probabilities, , are replaced with predicted sampling  probabilities, .  Specifically,1 13ß9 3
6s Ð[ Ñ

the  are formed by replacing  in (15)  with maximum likelihood estimates, .   RRZ (proposition 6.1)1 < <s Ð[ Ñ s
3 9

6

show that -estimators are consistent, asymptotically normal, with influence function1s
H Ð Ð[ Ñ Ñ H Ð Ñ  T W Ð$"Ñs, 6 , ,6 6

3 3 33ß91 1 =   
It immediately follows that the variance of any -estimator is less than or equal to the variance of the STP1sÐ[ Ñ6

estimator; and, for , the variance of the (  estimator is less than or equal to the variance of the[  [ [ Ñs7 6 7
31

1 1s sÐ[ Ñ [ ß3
6 0estimator.  In Result 1 appendix C, we show that for  -estimators based on  a model saturated in 

such as model (17),  In Appendix F we provide code for implementing -T W œ ÐV  Ñ H [ Þ s,0 " J,
3 3
0 0

39 33 391 1 1I’ ¹ “
estimators using any logistic model (15).
 One feature of  -estimation is that it is the "natural" estimating procedure when the requirements that1s
sampling is independent and with known probabilities are relaxed.  In general, the dependent sampling we
consider is characterized as follows: partition the observed  into a finite number of strata select a fixed[ à3

number of cases and controls from each stratum.  If we let  be the saturated column space of  indicator[3
0

variables generated by that partition, then we can use any  -estimator with   (RRZ, lemma 6.2).  Such1s [   [6 0

dependent sampling commonly occurs.  For example, in the Hp study we sampled a fixed number of cases and
controls.  NCC risk set sampling is by design dependent. We review the definition of NCC sampling and
provide appropriate -estimators in Appendix E.  We have so far assumed that , or equivalently the  in1 1 <s ß39 9

specified logistic models (15, 18) are known  If rather than knowing  , we only know there is a , such thatÞ < <9
‡

6913> œ [ Ð[ Ñ Þs  , then the estimator  has influence function given by (31) (RRZ, proposition 6.2)1 < 1
39

‡ 6 6
3 3

7.   Analyses of the Hp Data  Using the  , -estimator1 ?sÐ N Ñ
  Though Hp infection is a well established risk factor for gastric cancers arising outside of the cardia of
the stomach (Helicobacter and Cancer Collaborative Group, 2001), the association with gastric cancers that arise
in the cardia region (the proximal 2-3 centimeters of the stomach) is less established.  Prior to our study, only a
few small studies (case sizes ranging from 4 to 12), examined the Hp-GCC  association. The consensus from
these studies (Helicobacter and Cancer Collaborative Group, 2001; Dawsey, Mark, Taylor, et al., 2002), all
conducted on Western populations, was that Hp was "protective" for GCC, with 0.5.  Various mechanisticrr ¸
hypothesis have been advanced  to account for the opposite association of Hp on GNC and GCC (Blaser, 1999).
 In our study (Limburg et al. 2001) we sampled approximately 25% of GCC cases (100 cases) and 7%
of controls (200 controls) that occurred in the cohort of 30,000 by 5.25 years of follow-up. We found an Hp
prevalence (Hp ) of approximately 65%, and a  of approximately two for Hp  individuals.  The only other rr
major independent risk factor for GCC in this population was age: age greater than the cohort median age
increased GCC risk by a factor of 3.5.
  Table 1 contains estimates of covariate specific survivals at  5 25 years based on the CPH model7 œ Þ
(4) with  (Hp) and (age) indicator variables as defined in the introduction.  We used the -estimator basedZ N s1
on logistic model (17)   Throughout this paper we denote this estimator as .  At each level of age, theÞ Ð ß N Ñs1 ?
Hp  group had lower survivals than the Hp  group.  Within levels of Hp exposure, survival was higher in the 

younger group.  Using the population age distribution for standardization (see A.4 for definitions and formulae),
we estimated that Hp  individuals had 1.8% more cases (95% CI, 0.02-2.15) of GCC than the Hp  individuals 

in the 5.25 years of follow-up.    ÐMRWIVX XEFPI " LIVI Ñ

8.     Implications of  Efficiency for Study Design and Analysis
8.1  The general case
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  T , is a function of unknown parameters.  RRZ proposition 2.4he optimal  function, 1Ð I† Ñ H [’ ¹ “J,
3

established that can be replaced by a consistent estimator,  , without changing the asymptotic1 1s
/00 /00
, ,

distribution of the estimator.  That is, an estimator using   achieves the nonparametric efficiency, or1s
/00
,

semiparametric RC-efficiency, bound.  When  can be consistently estimated from the data and model1/00,

assumptions, we say the efficient estimator is identified.  If not, then the variance of the efficient influence
function represents an unknown lower bound that no estimator is guaranteed to achieve.  It is immediately clear
that unless  is a deterministic function of , , and efficient estimation\ Ö ßE × H [ Á I H ßE3 3 3 3 3

J, J,
3 3? ?I’ ¹ “ ’ ¹ “

requires  in the conditioning event.  In the remainder of this section we approach the task of conditioning on\3

\ 13
/00
,, by re-expressing  in terms of relative risks, survivals, and covariate distributions.  We discuss conditions

under which each of these can be consistently estimated, and examine the implications for study design and
analysis.
 We re-express  as1/003ß,

1/003ß, =II H [ ßZ œ H [ ß @ T<Ð@l[ Ñ.@ Ð$#Ñ’ ¹ “ (J, J,
3 33 3 3 3

i
Š ‹

In the design stage   From (32) it, a crucial consideration is what, if any, auxiliary variables should be measured.
is clear that for  to be optimal, it is sufficient that for any larger set,  , A A A+?B +?B

3 33
+?B 

T @ \ ß ß N Ñ œ T @ \ ß ß N Ñ Ð$$Ñ<Ð l <Ð l3 3 3 3 3 33
+?B +?B

3? A ? A, , 
That is, we should collect all auxiliary information which provides additional knowledge about the distribution
of the incompletely measured covariates  at any time on study   To further examine the determinants ofZ Þ3

T <Ð@l[ Ñ3 , we reparameterize in terms of the time dependent exposure odds
O O Ð[ Ñ œ T<ÐZ œ @ l \ ßE Ñ T<ÐZ œ @ l \ ßE Ñ3ß@ @ 3 3 3 3 3 3 3 3 3

"
† †´ Ð$%Ñ† ? ?, ,  ‚

where , and .  Using Bayes' theorem and a non-informative@1is some chosen reference level in i i@ −†

censoring assumption we show (Appendix D) that
O œ << Ð\ @ ßE Ñ ‚ ‚ T<Ð@ lE Ñ T<Ð@ lE Ñ Ð$&Ñ3ß@ 3 3 3 3

"
† | † †?3 W Ð\ l@ E Ñ WÐ\ l@ E Ñ3 3 3 3

"† ‚ ‚
Here ,  are the relative risks and survival probabilities at  conditional on<<Ð\ @ ßE Ñ3 3|  and † WÐ\ l@ E Ñ \3 3 3

ÖZ ßE × ÖZ ß N ×Þ ?3 3 3 3, rather than  By (35), (33) is true if, for all times 
WÐ?lZ ß N ß Ñ œ WÐ?lZ ß N ß Ñ Ð$'Ñ3 3 3 33

+?B +?B
3A A  

and
    , , T<ÐZ lN Ñ œ T<ÐZ lN Ñ Ð$(Ñ3 3 3

+?B
3

+?B
3A A

3

Epidemiologists refer to (36) as containing  all A A3 3
+?B +?Bindependent predictors of  outcome; and (37) as 

containing all .  independent predictors of  exposure
 The requirements for efficient analysis are conceptually and mathematically equivalent to those in the
design stage.  That is, to estimate , we need only include in the conditioning event that subset of  that1/00,

+?BA

contains the independent predictors of outcome and exposure. Though for any given  it is impossible toA+?B
3

know with certainty whether (36) or (37) are true, these are the exact considerations required to control
confounding.  Consequently, in the analysis stage epidemiologists generally try to choose  as the subset ofN3

E3
+?B

 such that (36) and  (37) are "approximately" true when  is removed from the conditioning event.  IfA
successful,  contains all the independent risk factors of outcome, and  (35) becomesN3

   |O œ << Ð\ @ ß N Ñ ‚ ‚ T<Ð@ lE Ñ T<Ð@ lE Ñ Ð$)Ñ3ß@ 3 3 3 3
"

†
† †?3 W Ð\ l@ ß N Ñ WÐ\ l@ ß N Ñ3 3 3 3

"† ‚ ‚
8.2   Efficiency when  contains all the independent risk factorsN  
 In this section we assume that there is no confounding, in particular that  contains all independentN3

risk factors such that (38) is true.  , if we can estimate each of theFrom (32) it is clear that we can estimate  1/003ß,

terms in For both the non and semiparametric failure time models, the second and third terms can beO3ß@† .  
estimated by  and where ~

WÐ\ l@ N Ñ T Ts s
3 3

† Ð@ lE Ð@ lE Z E† †
3 3), )  is the empirical average of  within levels of .  For

the semiparametric model,  can be estimated by   <<Ð?l^ Ñ << Ð?l^ Ñ œ3 3
~ ~ ~ ~  Here the  and /B: ^ Þ WÐ\ l@ N Ñ" "

X

3 3 3
†

come from estimates based on any .  Hence the semiparametric RC-efficient estimators of  and 1 Ð ß Ñ, 9 9" A 7 "
/B: ^"X

9  are identified.  In contrast, the nonparametric model provides no obvious estimator of  If<<Ð?l^ Ñ3 .  
5‡ were small, and the number of cases large, one could theoretically use kernel smooths to estimate hazards,
and hence 'srr locally. We do not explore this possibility further.  Instead, in section 9 we propose several 
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efficient estimators (LE-estimators).  LE-estimators approximate by making assumptions about1/00,   .<<Ð?l^ Ñ3
We denote the resultant approximations by  .  If the assumptions about the 's are correct, then1s,

/00? rr

1 1s
637 :?/00 /00

, ,Ò , and the LE-estimators are efficient.  Regardless of the truth of the assumptions, the proposed
PI-estimators are consistent.

9.  Simulations of STP,  ,  RC-efficient and Locally Efficient Estimators1s
 All simulations are based on the following covariate distribution: , ;T<ÐN"Ñ œ !Þ& T<ÐZ "Ñ œ !Þ'&
T<ÐZ "lN"Ñ œ !Þ)& X.    was specified by a CPH model with exponential  baseline hazard.  The magnitudes for3

the baseline hazard, and the exponential hazard for the independent censoring times, were chosen to produce
approximately 1000 expected cases in a cohort of size n=6600 by time . This is the approximate number of7
cases that have occurred through the latest endpoint assessment, = 15 years.  For the semiparametric models7
we simulated under the two covariate CPH model (4) with  ( , and" "" @ # 4œ 68 # << œ #Ñß œ 68 $ Ð<< œ $Ñ

estimated .  For the nonparametric simulations the data were generated by a one-covariate CPH modelWÐ l@4Ñ7
with   ( ; we estimated .  Stage 2 sampling was always binomial, depending only on" 7" @œ 68 # << œ #Ñ WÐ l@Ñ
case status (16).  Fifteen per cent of controls and 25% of cases were sampled, with a resultant control-to-case
ratio of approximately 3:1.  Each of the simulation results represents the average of 2000 realizations.  Since, as
evident from the tables, all of the survival estimators (and estimators of data not shown) were unbiased and"9ß
had confidence intervals that covered near the stated rates, we focus the discussion on  .relative efficiency (RE)
RE is defined as the ratio (times 100) of the variance of a given estimator to the variance of the STP estimator.
The smaller the RE,  the greater the efficiency.
 Table 2 contrasts the STP, RC-efficient, and  semiparametric estimators of   and1 ? 7sÐ ß N Ñ WÐ l@!4!Ñ
WÐ l@"4"ÑÞ Ð ß N Ñs7 1 ? Both the RC-efficient and the  estimators are substantially more efficient than the STP
estimator: approximately 45% more efficient in estimating , and 70% more efficient in estimatingWÐ l@!4!Ñ7
WÐ l@"4"Ñ WÐ l@"4"Ñ7 7.  The greater magnitude of the gains for  reflects the fact that, in general, efficiency
differences are due to the differential extraction of information from cases with unmeasured .  In thisZ3

simulation approximately 8%  of cases had V0J0,  whereas 71% had V1J1.  The differences in efficiency as a
function of covariate values disappear when the simulations are set to produce equal number of cases in each
covariate level (data not shown).  Though for both covariate levels the RC-efficient are more efficient than the
1 ? 1 ? ?s sÐ ß N Ñ Ð ß N Ñ 1 H N ß-estimators, these differences are small. Since for the saturated -estimator =, 3 3

J,
3I’ ¹ “

(Result 1, Appendix C), the slight advantage of the RC-efficient reflects the fact that little is gained by adding
the actual observed time , , to the conditioning events\ Þ3  (INSERT TABLE 2 HERE )
 Table 3 contains results for nonparametric estimators of  when  is an auxiliary covariate ratherWÐ l@Ñ N7 3

than a risk factor.  For example,  might be a surrogate for , such as evidence of gastric inflammation foundN Z3 3

on a biopsies obtained at the beginning of the study.  These simulations reveal two important features of
estimation.  First, they demonstrate the potential for gaining efficiency by utilizing auxiliary information: the
1 ? 1 ?s sÐ ß N Ñ Ð Ñ-estimator (logistic model 17) is more efficient than the -estimator (logistic model 16).  In
simulations (not shown) where  and  are independent,  the efficiency of the -estimator is identical toZ N Ð ß N Ñs1 ?
that of -estimator.  Second, the contrast in the performance of  the two different locally efficient estimating1 ?sÐ Ñ
procedures illustrates some noteworthy properties of LE-estimators.  Each of the corresponding named simple
( ) and  ( )  estimators use identical estimates,  , of  .  However SLE-estimatesSLE insured ILE local efficient 1 1s

?
1 1
/00

are produced by setting   in (20), whereas ILE-estimates are -estimates based on prediction model1 œ 1s s"
/00
1 1

(30) with .  By construction, ILE-estimators must be at least as efficient as -estimators, even1 œ 1 Ð ß N Ñs s"
/00
1  1 ?

when  is based on a misspecified .  SLE's do not share this property.  For example, the  of1 Ñ 1s s" "
/00 /00? ?<<Ð\ l@"3

the  .  Specifically, weSLE and ILE correct-estimators  is based on a correctly specified models for <<Ð\ l@"3 Ñ
assumed exponential hazards within each  level; estimated the  hazards by dividing the number of observedZ
cases by total person-time; and estimated  as a ratio of the hazards.  Both the SLE and ILE correct<<Ð\ l@"3 Ñ
estimators attain the nonparametric efficiency bound.  In contrast the SLE and ILE   and  estimators useprior null
misspecified 's.  The   estimators set  0.5, the pooled estimate of  from the prior<<Ð\ l@" <<Ð\ l@"3 3Ñ Ñ œprior rr
studies. The ;  these would be the efficient estimator under the nullnull   estimators set <<Ð\ l@"3 Ñ œ "
hypothesis.  Table 3 shows that for estimators of  the SLE-prior estimator is less efficient than theWÐ l@!Ñ7
1 ?sÐ ß N Ñ Z N-estimator.  In simulations with  and  independent (data not shown), the SLE-prior has a variance
9% greater than even the STP-estimator.  Thus the RE of the SLE estimators are not bounded above by 1. In
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contrast, in the Table 3 simulations the ILE prior is more efficient that the -estimator.  Under1 ?sÐ ß N Ñ
independence the efficiencies are nearly identical.  Note that all locally efficient estimators, misspecified or not,
are unbiased and have confidence intervals that cover at the stated rate. (INSERT TABLE 3 HERE)

10.    DISCUSSION
 In this paper we characterized the class of non and semiparametric cumulative hazard estimators, and,
by extension, survival estimators, in two-stage studies. We formulated the difference between estimators within
a class in terms of  differences in their utilization of  information from subjects on whom the stage-two
exposures were not measured.  In particular, we showed that the minimum variance estimators required
estimating the expected value of the full data influence function conditional on the partially observed, e.g.,
stage-one, data.  We expressed the requirements for estimating (or approximating) this conditional expectation
in terms of concepts familiar to epidemiologists: efficient estimation requires knowledge about which covariates
are independent risk factors for exposure and for disease.  We discussed the impact of these considerations in
structuring the design and analysis of two-stage studies.  We emphasized a general approach to analysis, 1s-
estimation, which allows investigators to incorporate their knowledge in ways that can increase the efficiency of
estimation without undermining consistency.  Computer code in S-plus and R for these -estimators is given in1s
Appendix F.  
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Appendix A.
 In this appendix, we provide consistent estimators of the asymptotic variances for the two-stage
estimators of cumulative hazards, relative risks, and survivals. When we can do so without confusion, and to
indicate that any consistent estimator of a parameter will suffice, we drop the arguments .  For instance, we1,
write  for , .   ; ~ ~ ~~ ~

A 7 A 7 A "Ð Ñ Ð 1 Ñ . Ð?Ñ" We further define  =  .Q Ð?Ñ .R Ð?Ñ  ] Ð?Ñ .Q Ð?ß Ñ œ .R Ð?Ñ  ] Ð?Ñ3 3 3 3 3 3

. Ð ?ß Ñ/B: ^ † 8 W Ð?ß † Ñ /Ð?ß Ñ œ = Ð?ß Ñ= Ð?ß ÑA " " " " "
~ ~ ~ ~ ;    ; ;~ ~ ~ ~
9 3 9

" "4 " != Ð?ß Ñ4  = 

 =  ;~ ~ ~
3 8 V ^  IÐ\ ß Ñ ^  IÐ\ ß Ñ" "

3œ"

8
3ß9 3 3 3 3 3 3

X! Š ‹Š ‹1 ? " "

A.1. Estimating  (26), and  (31) H Ð1 Ñ H Ð Ð[ ÑÑs, , 6
3 3, 1

 Estimators  of are formed by the obvious substitutions for ~
H Ð1 Ñ H Ð1 Ñ † †3

,
, ,3

, = Ð?ß Ñ .Q Ð?ß Ñß4
3, and

/Ð?ß Ñ H Ðs s~  in 21, 23, 25.  The weights  can be replaced by any consistent estimate,  .  For  -estimators, ~
" 1 1 13ß9 3

1

1 1s sÐ[ Ñ Ñ H Ð Ð[ Ñ Ñ T6 6 ,6
3 and  are formed by estimating  (28) by the vector of regression parameters from an~ 2

ordinary least squares regression of  on the scores .  Letting  ( ) , we estimate~ ~
H Ð Ñ W 1 œ T [s

,
3 339 3ß9

6

3ß
#6 6

31 1 12
H Ð Ð[ ÑÑs3

3
61  by  substituting regression estimates from sequential least squares in the influence function.

H Ð Ð[ ÑÑ ´ H Ð 1 ß 1 œ ! Ñ  IÒH Ð1 œ !ß 1 ÑW IÒW W W Þs s s3 l l
3 3 $ 3 $ 3 3 3

6 $ ‡ $ ‡ 6 6
# #

w w "
1 1 1 ( ) ( )  ‘ ‘

A.2 Estimating the asymptotic variance of  and  A 7 " A "
~ ~
Ð Ñß Ö Ð ß Ñ×

X X
, 9 7

 Let   be  and  respectively.H œ ÖH ßH × Ö Ñ×
~ ~ ~ , and  and the variances of   , ,~ ~~ ~+ # $

3 3 3

X
X XX

Z Z Ð Ñ1 +
A 7 " A "9Ð7

C =   onsistent estimates of the asymptotic variance are and .~ ~ ~ ~ ~ ~
Z 8 Z œ 8" +

" "" " + +
3 3 3 3

X X! !H H H H

A.3 Estimating the asymptotic variance of  WÐ l@4Ñ
~ .7

 ,  be the vector of  nonparametric and semiparametric estimates of~ ~Let and WÐ Ñ WÐ Ñ 5 ‚ "7 7 " ‡

WÐ Ñß 2 WÐ à 2Ñ WÐ à 2ß Ñ Z 5 ‚ 57 7 7 "with row entry   and  . Let   variance matrices~ ~
Zs1 and be the corresponding =#

‡ ‡

for , .  Define  as the  diagonal matrix with   in the 'th row 'th column.  Then~ ~ ~
WÐ Ñ WÐ Ñ K 5 ‚ 5 WÐ2Ñ 2 27 7 " and  ‡ ‡

Z œ K Z 2 ^ : ‚
~ ~   Each  in the support of  can be represented as a unique 1=" ="Z K" " is a consistent estimate of . 
covariate vector, .   Let .  Let  be the ~ ~ ~

^ P œ WÐ à 2ß Ñ /B:Ð ^ Ñ ‚ Ö "ß ‚ ^ × P 5 ‚ Ð:  "Ñ2 2 2 2
X ‡7 " " A 7 "9Ð ß Ñ

matrix with  row .  Then  ~ ~
2 >2 P Z œ Pw X

2 =2 Z P Z Þ+ =#
w is a consistent estimator of 

A.4 Estimating the asymptotic variances of   WÐ l@4Ñ W Ð l@Ñ V.Ð Ñ TEV
~ ~, , , and .~
7 7 7

= ~
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 e define , , to be the weighted sum ofConsistent with common usage w standardized survival W Ð l@Ñ= 7

covariate specific survivals, with known weights, AÐ4 Ñ W Ð l@Ñ œ WÐ l@4 ÑAÐ4 Ñ‡ ‡ ‡, which sum to 1.  That is, .s 7 7!
]

 

Let  @‡ ‡ ‡ ‡,  be the number of levels of  and  respectively.  Arrange  in groups of length , in order~
4 Z N WÐ l@4Ñ @ 47

of  increasing index.  Let  be the  matrix of weights ;  the  identity matrix; and [ "‚ 4 A M @ ‚ @ G œ [X ‡ ‡ ‡ X
4 44 @ A‡

Œ M Œ W Ð l@Ñ œ G WÐ † Ñ@ A
=

‡  where  denotes the Kronecker product .  Then ,  with variance estimated by, for~ ~
7 7

instance,  .   Estimates of standardized risk differences , , are simple contrasts of the .~ ~ ~
G Z G V.Ð Ñ W Ð l@ÑA =# A

X = 7 7 
To estimate populztion attributable risks,  PAR, we define the "crude weight matrix" , " ‚ 5 [ ÖA ß‡ X

@4 4"   = v1

A ß ÞÞÞA ß A ß ÞÞ A ß ÞÞÞA ÞÞÞÞÞ A ×v1 v14# 4 @#4" @#4 @ 4"ß @ 4‡ ‡ ‡ ‡ ‡ , with ;  ~ ~ ~A œ 8 Î8 8 œ V MÐZ œ @ß N œ 4Ñ@4 @4 @4 3 3 3
3œ"

8!
1 7s Ð[ Ñ 8 œ 8 W Ð Ñ œ Wl@ß 4Ñ"
3 3 @4

@4

7 X
@4,   .  The  estimator of the "crude population survival' is .  We let~ ~ ~ ~! [

" œ Ö!ß !ß ß "ß ÞÞ !ÞÞ!× @ ‚ " 2 >2v2
‡ wbe the 1 vector with the only non-zero element being  in the  row.. Then

using  as the unexposed level  we estimate the  as@ œ @ Z TEV†

TEV œ W Ð l Ñ  W Ð Ñ ‚ "  W Ð Ñ
~ ~ ~ ~Š ‹ Š ‹ = 7 7 "

7 7 7@†

     =   Ö [ × WÐ l@ß 4Ñ ‚ "  [ WÐ l@ß 4Ñ
p p

" GX X X
4

"

v† @4 @47 7Š ‹
Using the delta method we obtain and estimate of the variance of the  ~ ~

TEVß Z œ:+<

` Z ` ` œ M
~ , where  + =# 5

w X X X X
"

@ @Š Š"  [ WÐ l@ß 4Ñ ÖG [ × ÖG [ × WÐ l@ß 4Ñ "  [ WÐ l@ß 4Ñ
p p p

   @4 @4 @4 @47 7 7‹ † †‡

‹#
X ‡ ‡

5 5[ M M œ 5 ‚ 5@4 ‡ ‡, and  identity matrix.

 Appendix  B
 In this appendix we prove that the variance of (24) is minimized when  .  Let1 œ !ß 1 œ IÒ H l[ Ó2 3

‡ J$
3 3

G Ð1 Ñ œ V H ÐV  Ñ 1 5 à 5 œ /Ð?ß Ñ . Ð?ÑÞ H Ð1 ß 1 Ñ G Ð1 Ñ3" # 3 3 39 3 " " 9 9 # "39 3 39
" J " " $ ‡

! 3 $1 1 1 " A  +   Then (25) is  = 3
2 23 ' 7

 ÐV  Ñ1 Þ 11 139
" ‡ ‡

3 39 3$  For any fixed , proposition 2.3 RRZ establishes that the  minimizing the variance of12  $

H Ð1 ß 1 Ñ 1 Ð1 Ñ œ I G Ð1 Ñ [ œ H [ H Ð1 ß 1 Ñ$ ‡ J $ ‡
3 3# # 3 #$ $3ß

00
3 3 is,   .  Hence the variance of  is  minimized by3

e
2

3’ ¹ “ ’ ¹ “I

finding the  that minimizes1#

@+< G Ð1 Ñ  # -9@ G Ð1 Ñß ÐV  Ñ 1 ÐFÞ"Ñ3 " 3ß" 3 39
‡ ‡ "
# # 39 3ß$

/00
, ’ Š ‹“1 1  

Taking the expectations in (B.1) conditional on , the only  term containing  is[ 13 2

I Ð"  Ñ Ð 1 5 Ñ’ “1 1" " #
39 39 3ß "3 2

which is minimized by 1 œ !Þ3ß#

Appendix C
 In this appendix we show that the variance of (27) is minimized iff   H Ð[ Ñ ; W œ ÐV  Ñ3 3 39

, 6 , 6 "
3 39

 1 1

I H l[ Þ W ; œ T’ “J, 6 , ,6
3 33  For any given set of scores, ,  the variance is minimized when   (28).  Since the

variance is non-increasing in the dimension of ,    iffW T W œ ÐV  Ñ1 ß3 3 39
6 ,6 6 "

3 39
/00
,1 1 for all ,[  [3 3

7 6

I H Ð Ñ  T W W œ ! ÐGÞ"Ñ” •Š ‹, 6 7l6
3

w

13ß9  . ,6

 Here  are the linearly independent matrix of scores from the residual of the projection of  on .   TakingW W W3
7l6 7 6

33

the expectation of (C.1) conditional on , and using MAR restriction (14)  this becomes  L ß I [ Ð"  Ñ3 393
7l6’ 1

“ ¹” •I H  T [ œ !J,
3 39 31 ,6 6

3[ ,  which is true iff

T ÐV  ÑI H l[,6 6
3W œ 1 139 3

" J,
3 39 3’ “.     

 Result : " Taking each of the expectations in  conditional on , we obtain T L T œ,6 ,6
3 I

’ “ ’ “Ð"  ÑH ‚ Ð[ Ñ ‚ Ð"  Ñ[ [1 1 139 39 39
J, 6 w 6 6
3 3 3 3

"

I [
w .   Let  have discrete covariate space of dimension0
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0 0‡ ‡ ‡, with model (15) parameterized so that the design matrix is the ‚ 0  identity  matrix.  Then, the matrix
of scores are orthonormal, and   .T W œ ÐV  Ñ H [,0 " J, 0

3
0

39 33 391 1 I’ ¹ “
 To see that for (30)  Result 2: T ÐV  Ñ 1,0

3W œf 1 139
"

3 39
/00
, , note that (30) is correctly specified with

< < 1 1 1" # 3ß9 3 39
,6 , "

3 39œ "ß œ ! T H Ð Ñ ÐV  Ñ;  by the general form of the  in Result 1, the projection of  onto 
[ ÐV  ÑI H [3,

/00
39 3
" J,

3 39 3is  .  Since the span of the scores from model (30) is greater than the span of1 1 ’ ¹ “
1 139
"

3 39 3
/00ÐV  Ñ[ ,  (29) is true for the scores from model (30)Þ

Appendix  D
 In this appendix we derive a general expression for O Ð[ Ñ@ 3† , .and the specific expression given in (39)

We define | ,  |    ;  - ?‡
7 3 3 3 3 3ß

637
2p!Ð= @ ßE Ñ œ T<Ð = Ÿ \  =  2 œ 7 \   =ß @ ßE Ñ 2 ÐHÞ"Ñ† † ‚

  | |    - -‡ ‡
\ 73

7œ!

"

Ð= @ ßE Ñ œ Ð= @ ßEÑ ÐHÞ#Ñ† †"
   | , |  << Ð= l @ ß E Ñ œ Ð= @ E Ñ Ð= @ ßE ß Ñ ÐHÞ$Ñ

7

† †
3 7 3 7 3- -‚ 1  

where  .  We further define a  assumption7 − Ö!ß "× " non-informative censoring"
T<ÐG   =lX   =ß Z ßE Ñ œ T<ÐG   =lX   =ßE Ñ ÐHÞ%Ñ3 3 3 3 3 33

The hazards in (D.1) are referred to as the crude hazards of ,  ( ), and , ( ).  (D.2) is the hazardG 7 œ ! X 7 œ "3 3

for the random variable .  Under the conditional independence assumption, the crude hazards equal the net\3

hazards (e.g. Andersen et al.,
1991).  Non-informative censoring assumption (D.4) is similar in subject matter content to the usual non-
informative censoring assumption, but does not imply that assumption: the latter allows for dependency of both
G X Z ß3 3 3and  on  but requires that, in terms of factorability of the likelihood, such dependency be distinct (
Andersen et al., 1991).
  ,By Bayes' rule
T<Ð l\ ß T <Ð\ ß l T <Ð\ œ B ß l @ß E@ ß E Ñ œ @ ß E Ñ ‚ T<Ð@ l E Ñ T<Ð\ ß l E Ñ† † †

3 3 3 3 33? ? ?3 3 3 3 3 3 3 3    .  Writing  as‚ ? )

-?3 3Š ‹B l@ßE \   B ‚ T<Ð\   B l@ßE Ñ3 3 3 3 3 3, , we obtain

O œ << ÐB @ ßE ß Ñ ‚ T<Ð\   B l@ ßE ÑÎ T<Ð\   B l@ ßE Ñ ‚ ÐHÞ&Ñ3ß@ 3 3 3 3 3 3 3 3
"

† ?3
| † †

    T<Ð@ l E ÑÎT<Ð@ l E Ñ†
3 3

1

Applying  (D.4) the right hand side of  (D.5) givesß

<< ÐB @ ßE Ñ ‚ T<ÐX   B l@ ßE Ñ T<ÐX   B l@ ßE Ñ ‚ ÐHÞ'Ñ" 3 3 3 3 3 3 3 3
"| † †?3 

       T<Ð@ l E Ñ T<Ð@ l E Ñ†
3 3 1

Using LE estimators as in section 9,  one could postulate models for the distribution of   conditional onX3

ÖZ ßE × G3 3 3 and estimate (D.6); with additional assumptions about the conditional distribution of , (D.5) can be
similarly estimated.  When contains all the independent risk factors in , ( )  becomes (39).N E HÞ'3

 Though (D.5-D.6, 38) are true regardless of the support of and , consistency of the estimatorsZ E3 3

given in section 9 depends on the discreteness of .  When the support is not discrete, can beE O3 3ß@  

approximated by forming discretized random variables , and using the empirical distribution of E T<ÐZ lE Ñ= =
3 33

instead of .T<ÐZ lE Ñ3 3

Appendix E:   -estimators for Case-Cohort and Nested Case-Control  Designs1s
 In this  appendix we provide CCH or1s-estimators when sampling follows that defined by either the 
NCC designs. For simplicity we assume sampling does not depend on   Though both designs specify that E Þ Z3 3

be observed on all cases  the , -estimators we give require no such restriction.  We assume only that cases are1s
sampled with some known (dependent, or independent, probability).  For detailed descriptions of sampling
procedures see, for instance, Self and Prentice (1988), or Borgan et al. (1995).
 In the CCH the "comparison" group is a binomial random sampling drawn from all cohort members.
Since both the case and controls sampling probabilities are dependent only on , any  -estimators with? 13 s
column space greater than (8) can be used.
 NCC designs use dependent, risk set, sampling.  Let  be the set of ordered case failure ÖX ß ÞÞÞÞX ×Ð"Ñ Ð.Ñ

times. We estimate the case-sampling probability, ( , by the proportion of cases sampled  For subjects1 ?39 "Ñ Þ
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with , we define indicator variables,  =  , if  ,?3 3235œ ! V " V œ "V œ " X à35 Ð5Ñ, if the subject is selected at  and 
for some .  Let ,  then2 Ÿ 5à V ´ ! ´ T<ÐV œ "l\ ß œ !ßV œ !Ñ3! 35"3ß5 35 3 31 ?
 (T<ÐV œ "l œ !ß\ Ñ ´ Ñ œ ÐI"Ñ3 3 3 39 !? 1 ?

   ,   ! #
5œ

. 5"

35 3 34Ð5Ñ 35"
4œ"1

1 1MÐ\   X ßV œ ! Ñ Ð"  Ñ

where the product term is defined to be 1 when   To estimate , we replace the  in  with5 œ "Þ Ð Ñ ÐI"Ñ1 ? 139 ! 3ß5

the proportion of controls with  who were sampled at .  Estimating the influenceÐ\   X ß V œ !Ñ X3 3ß5"Ð5Ñ Ð5Ñ

function  requires obtaining  scores from the likelihood based on .1 ?39Ð Ñ

Appendix F: Computer Code for Implementing the -estimators  in R 1.70 or S-plus 6.0 Release 21s
  ( appendix F was written by Steven D. Mark and Hormuzd Katki)

 To facilitate correspondence with the data analysis and simulations  the code given is  written for the
structure of the data described in Sections 7 and 8, and implements the non and semiparametric -1 ?sÐ ß N Ñ
estimators (17).  Making the appropriate changes to the design matrix in the code in F1 below, allows
implementation of  -estimators for any correctly specified logistic model (15,18).  The semiparametric example1s
we give has no auxiliary covariates, so that .  The general structure of the code poses no such constraint.N œ E3 3.
That is, the covariates used to predict , need not be the same as those specified by the CPH model in F3. 1s In the
code below we refer to the set of ordered case-failure times }, and to ~

ÖX ß ÞÞÞÞX R Ð?Ñ œÐ"Ñ Ð.Ñ Þ !139
"

3 3V R Ð?Ñ.

R Ð?Ñ R Ð?Ñ œ
~  estimates the full data aggregated counting process, The semiparametricÞ Þ !139

"
3 3V R Ð?Ñ. 

estimator assumes the hazards are specified by CPH model (4).
F1.  Obtain predicted selection probabilities, W (15-17) and scores  (19 ) from logistic regression1sÐ Ñ ßW3 3

models.

F1.1  Attach the MASS library.  This allows us to use the generalized inverse to estimate the  requiredIÒW W Ów "

for the projection operator, . The generalized inverse is necessary if, for example, there is some  such thatT [,6
3

1(W .  This would occur if all cases were sampled.3Ñ œ "

 library(MASS) )

F1.2  Fit the  selection model (17).  The covariate matrix "x" in the code, corresponds to the  in (17).1 ?sÐ ß N Ñ [ 6

We keep the covariate matrix by setting
the option x=True.
 
 options(contrasts=c("contr.treatment","contr.poly"))
 propmod <- glm(R ~ J*Delta, x=True, epsilon=1e-10, family=binomial,
 data=hpdata)

F1.3  Obtain the estimated : pihat.1 ?sÐ ß N Ñ
 
 pihat = predict(propmod,type='response')

F1.4   Obtain the scores, , (19) from the prediction model.W6
3

 
 scores <- matrix(R-pihat,nrow=n,ncol=length(propmod$coeff)) * propmod$x

F2.  Nonparametric estimators of survival WÐ l@4Ñ7

 , In this section we provide code for estimating  and the variance of  for the~ ~
WÐ l@4Ñ7 WÐ l@4Ñ7

nonparametric  -estimator.  F2.1-2.2 returns survivals for all 4  strata at each observed failure time1 ?sÐ ß N Ñ 5 œ‡

in the stratum.  F4.3 retrieves the survival    , for "stratum 1", the stratum with  .  Here ~
WÐ l@!4!Ñ Z œ !ß N œ !7 7

is the time of the last observed failure time, , in stratum 1  F2.5-2.8 estimate the influence function (21,  A.1)X Þ.

for the 1 ?sÐ ß N Ñ estimator of  the cumulative hazard for stratum 1. The influence function is called  D1.phat.1.
F2.9 provides the variance estimator for  . To obtain the variance matrix for all 4 survival estimators~

WÐ l@!4!Ñ7
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requires cycling through #F2.3-2.8 and calculating the stratum specific survivals, surv.k, and influence
functions, D1phat.k.,  .  F2.10 produces the covariance matrix   of ( ), and  of as~ ~~ ~

5 − Ö"ß #ß $ß % × Z Z WÐ Ñ" ="A 7 7
described in A.2 and A.3.
 Note that though we obtain the survival estimate by using the  S-PLUS 6.0  (R 1.6.2) function survfit(),
the variances  returned by the survfit() function are not consistent for either the STP or -estimators.  In our1s
experience, the variance estimates from survfit( )  are considerably  smaller than the true variances.

F2.1 . Place pihat in the dataset; select subjects in stratum1: V0,J0
 
 hpdata$pihat <- pihat
 stratum1 <- hpdata[R==1 & V==0 & J==0,]

F2.2  Estimate  with weights   at each of the event times in each of the =4 stratum.WÐ?l@ß 4Ñ Ð ß N Ñ . 5s1 ? " ‡

 hpsurv <- survfit(Surv(X,Delta==1)~J+V, type="fl",weights=1/pihat,   
 na.action=na.omit,data=hpdata)

F2.3  Obtain the estimate .  The variable, risksetofinterest, is the index of the last event time in~
WÐ l@!4!Ñ7

stratum 1.

 risksetofinterest <- length(hpsurv[1]$n.event) -
 which(rev(hpsurv[1]$n.event)>0)[1] + 1
 print(surv.1 <- hpsurv[1]$surv[risksetofinterest])

F2.4   Obtain  (Section 4) and the aggregated counting process, , for stratum 1.~ ~
W Ð?Ñ R Ð?Ñ

!
Þ

 
 time=0,S0(time=0),dNdot(time=0)=0.
 failures <- hpsurv[1]$n.event!=0
 time <- c(0,hpsurv[1]$time[failures])
 S0 <- c(sum(1/stratum1$pihat),hpsurv[1]$n.risk[failures])
 dNdot <- c(0,hpsurv[1]$n.event[failures])

F2.5  Compute riskset, the index of the last failure time at risk for each subject in stratum 1.
 
 riskset <- matrix(0,nrow=dim(stratum1)[1],ncol=1)
 for (i in 1:dim(stratum1)[1]) {
   eligible <- rev(time <= stratum1$X[i])
   riskset[i] <- (length(time)+1)-which(eligible==max(eligible))[1]}

F2.6  Estimate , the influence function for the STP estimator of  (21, A.1),  for stratum 1.  Note~
H Ð Ñ Ð Ñ1

,13 391 A 7

H Ð Ñ ´
~ 0 for individuals not in stratum 1 (e.g.  stratum1=0).1

,13 391

 correction <- cumsum(S0^-2 * dNdot)
 influence <-
  (1/stratum1$pihat)*((1/S0[riskset])*(stratum1$Delta==1)*
 (riskset<=risksetofinterest) -  correction[pmin(riskset,risksetofinterest)] )
 D1 <- matrix(0,nrow=n,ncol=1)
 D1[R==1 & V==0 & J==0] <- influence

F2.7  Estimate the  offset,  (29, A.1):  gamma1.1 ?sÐ ß N Ñ T W" 3

 gamma1 <- scores %*% ginv(t(scores)%*%scores) %*% (t(scores) %*% D1)

F2.8  Estimate the variance of   for stratum 1 (A.2).~
A 7Ð Ñ
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  D1pihat.1 <- D1-gamma1
  print(varcumhaz <- t(D1pihat.1)%*%(D1pihat.1))

F2.9  Estimate the variance of   (A.3)  for stratum 1.~
WÐ l@4Ñ7

 print(varsurv <- surv^2 * varcumhaz)

F2.10  To obtain the overall variance matrix (A.3) of the survivals in all  4 strata, repeat  #4.3-4.8 as5 œ‡

described at the start of section 4.

 G <- diag(c(surv.1, surv.2, surv.3, surv.4))
 D1pihat <- matrix(c(D1pihat.1, D1pihat.2, D1pihat.3, D1pihat.4),ncol=4)
 print(V.s1 <- t(G) %*% t(D1pihat ) %*% D1pihat %*% G)

F3  Estimating  in CPH model (4)"9

 The code produces consistent estimates for the -estimators of , and the variance of the estimators.1 "s 9

The predicted probabilities , pihat, are obtained from the output of F1.   We estimate   (29, A.1) by a codeT W2
3

that is analogous, though not identical, to that provided for S-PLUS in Chapter 7.3 of  Therneau and Grambsch
(2000).  The main difference of importance is that we use the generalized inverse for reasons described in
Section 3.

F3.1  Estimate  with weights  . (NOTE: robust=TRUE or cluster() do" 1 ?9
"sÐ ß N Ñ

 not yield the correct variance)

 coxmod <-
 coxph(Surv(X,Delta==1)~J+V,weights=1/pihat,method="breslow",
 na.action=na.omit,x=T,data=hpdata)
 print(beta.til<- coxmod$coef)

F3.2  Estimate  (D2 below), the STP influence function (A.2).H Ð Ñ2
3 391

  Note, is a  vector. When  .~ ~
H Ð Ñ : ‚ " V œ !à H Ð Ñ ´ !

2 2
3 339 3 391 1

   
 D2 <- matrix(0,nrow=n,ncol=length(coxmod$coeff))
 D2[R==1,]  <- residuals(coxmod,'dfbeta',weighted=T)

F3.3  Estimate the  offset, : gamma2.1 ?sÐ ß N Ñ T W2
3

 
 gamma2 <- scores %*% ginv(t(scores)%*%scores) %*% (t(scores) %*% D2)

F3.4  .Estimate the variance of   ~ "
 
 D2pihat <- D2-gamma2
 print(varbeta <- t(D2pihat)%*%(D2pihat))

F4 Semiparametric estimator of survival  WÐ l@4Ñ7

 ,In this section we provide code for  the -estimator of the survivals, and  their variances,~
1 ? "sÐ ß N Ñ WÐ Ñ7

Z
~ (A.3).  The   .  The beta.til, and D2 are obtained from the output of=# WÐ Ñ 5 œ %

~ ,   is a vector of dimension  7 " ‡

F3.  The influence function of  the -estimator of 1s A 7 "9Ð ß Ñ is calculated by first obtaining the influence function
for the STP-estimator (called D3 in the code) in F4.4.  In  F4.5 we subtract off  the correct "offset" and obtain
the influence function of the 1 ?sÐ ß N Ñ-estimator (called D3pihat).

F4.1  Add to the data set the estimates of and from section 3 and 5. Select only individuals with 1 "3ß9 9 3V œ "Þ
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 beta.til <- coxmod$coef
 hpdata$pihat <- pihat
 fulldata <- hpdata[R==1,]

F4.2  Obtain , , and the estimator of the aggregated counting process .   Note that the hazard of~
W Ð? Ñ R Ð?Ñ

!
Þ"

coxph.details is the "centered hazard",  , where  is the  vector of covariate averages ofß /B: ^Ð?Ñ ^Ð?Ñ : ‚ "- "9
X~

the individuals at risk at time ?Þ

 coxdetails  <- coxph.detail(coxmod)
 time <- c(0,coxdetails$time)
 hazard <- coxdetails$hazard/exp(apply(coxdetails$x,2,mean) %*% beta_til)
 Ndot <- cumsum(coxdetails$weights[coxdetails$y[,3]==1])
         [!rev(duplicated(rev(coxdetails$y[coxdetails$y[,3]==1,2])))]
 dNdot <- c(0,Ndot[1],diff(Ndot))
 S0 <- c( sum(coxdetails$weight * exp(coxdetails$x %*% beta_til)) , dNdot[-1] /
 hazard  )

F4.3  Compute riskset, the index of the last failure time at risk for each subject.
 
 riskset <- matrix(0,nrow=dim(fulldata)[1],ncol=1)
 for (i in 1:dim(fulldata)[1]) {
   eligible <- rev(time <= fulldata$X[i])
   riskset[i] <- (length(time)+1)-which(eligible==max(eligible))[1]}

F4.4  Estimate, the influence function for the STP-estimator.  Here D1 is an estimator of the first term,H Ð Ñ$
3 91 , 

1 "39
" !

3 9 3 3!

"
V = Ð?ß Ñ .Q Ð?Ñ V œ ! , of that influence function.  For individuals with ,  D1=0.'  ‘7  

 risksetofinterest <- length(S0)
 correction <- cumsum(S0^-2 * dNbar)
 D1 <- matrix(0,nrow=n,ncol=1)
 D1[hpdata$R==1,] <-   
(1/fulldata$pihat)*((1/S0[riskset])*(fulldata$Delta==1)*(riskset<=risksetofinterest)
 - correction[pmin(riskset,risksetofinterest)]*exp(coxmod$x %*% beta)  )
 E <- coxdetails$mean
 EdLambda <- apply( E * matrix(hazard,nrow=length(hazard),ncol=2),2,sum )
 D3 <- D1 - ( D2 %*% EdLambda )

F4.5  Estimate (A.1), the influence function for the - estimator of .H Ð Ñ Ñ Ð ß N Ñ Ð ß Ñs s$
3 9 91 1 ? A 7 "

 gamma1 <- scores %*% ginv(t(scores)%*%scores) %*% (t(scores) %*% D1)
 D3pihat <- (D3 -gamma1
 print(varBaselineCumhaz <- t(D3pihat) %*% D3pihat)

F4.6   Estimate   (A.3) the vector of the variance of the survival estimates, , .  Here Z are the 4~ ~
Z 5 œ % WÐ Ñ=#

‡ 7 "
unique covariate levels, Z= [0 0],[0 1],[1 0],[1 1]).

 Z <- matrix(c(0,0,0,1,1,0,1,1),nrow=4,ncol=2,byrow=T)
 print(surv.beta<-exp(-cumhaz*exp(Z %*% beta)))
 D.a <- matrix(c(D3pihat,D2pihat),ncol=3,byrow=F)
 V.a <- t(D.a) %*% D.a
 L <- matrix(surv.beta*exp(Z %*% beta),nrow=4,ncol=3) *
     matrix(c(1,1,1,1,cumhaz*Z),nrow=4,ncol=3)
 print( V.s2 <- L %*% V.a %*% t(L) )
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Table 1.   
Estimating Survival Conditional on Hp and Age at 5.25 years  in the Linxian Cohort 

  

  Survival  (95% CI) 
  H. Pylori- (V0)  H. Pylori+ (V1) 

     
Young (J0)  99.2 (98.9, 99.5)  98.8 (98.4, 99.0) 

Old (J1)  97.3 (96.1, 98.1)  95.5 (94.4, 96.3) 
 

The estimates are based on the CPH model with relative risk exp(β1V+ β2 J).  
The ˆ( , )Jπ ∆ -estimator (17) was used for estimating oβ and ( ),o oτ βΛ . 

 
Table 2. 

The STP, RC-efficient, and ˆ( , )Jπ ∆  Semiparametric Estimators of τ( | , )S v j  
 

  0 0 90( | , ) %S v jτ =   1 1 73 5( | , ) . %S v jτ =  
Estimator  Mean 

Survival 
V=0, J=0 

95% CI 
Coverage 

Relative  
Efficiency 

 Mean 
Survival 
V=1, J=1 

95% CI 
Coverage 

Relative 
Efficiency 

STP  95.0 94.7 100  73.5 95.5 100 
RC-efficient  95.0 95.0 55  73.6 95.7 27 

ˆ( , )Jπ ∆   95.0 95.6 57  73.5 95.2 31 

 
Note: Relative efficiency equals 100 times the ratio of the variance of the estimator to the variance of the 
STP estimator.  

 
 

Table 3.  
The STP, ˆ( , )Jπ ∆ , SLE, and ILE non-parametric estimators of ( | )S vτ  in the presence of an 

auxiliary covariate 
 

  0 90( | ) %S vτ =   1 81( | ) %S vτ =  
Estimator  Mean Survival 

V=0 
95% CI 

Coverage 
Relative 

Efficiency 
 Mean 

Survival 
V=1 

95% CI 
Coverage 

Relative 
Efficiency 

STP  90.0 94.1 100  81.0 94.7 100 
ˆ ( )π ∆   90.0 94.5 83  81.0 95.4 50 

ˆ( , )Jπ ∆   90.0 93.8 74  81.0 94.8 45 

SLE correct  90.0 94.4 71  81.0 95.7 40 
ILE correct  90.0 94.4 71  81.0 95.7 40 
SLE prior  90.0 94.9 85  81.0 95.4 43 
ILE prior  90.0 94.2 71  81.0 95.5 40 
SLE null  90.0 94.4 74  81.0 95.7 40 
ILE null  90.0 94.4 71  81.0 95.8 40 

 
Note: Relative efficiency equals 100 times the ratio of the variance of the estimator to the variance of the 
STP estimator 
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